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1 SPEED OF CONVERGENCE

The speed of convergence in case no leader is present is determined by ability and the

network structure. This is highlighted in the following proposition.

Proposition 12. Consider a symmetric setting with k group members that assign weight γ ∈
[
1
k , 1
]

to their own identity and equal weight (1− γ) / (k − 1) to each of the k − 1 other members.

1. If all group members have the same initial integration level, then group members of high ability

integrate faster than those of lower ability, in the sense that at any point of time their identity

is lower than that of group members of lower ability.

2. If group members have the same ability, then group members with lower initial identity inte-

grate faster than those with higher initial identity, in the sense that at any point of time their

identity is lower than that of group members with higher initial identity.

Proof of Proposition 12 – Speed of Convergence

We first prove the following result concerning the ranking of identities in subsequent time

periods. Proposition 12 then follows immediately.

Lemma. Consider a symmetric setting with k group members that all assign weight γ ∈ [ 1k , 1] to

their own identity and equal weight (1− γ) / (k − 1) to each of the k − 1 other members.

Consider any pair of group members i, j such that αi ≥ αj . If pti ≤ ptj this implies pt+1
i ≤ pt+1

j .

If the inequality on α or on pt or on both is strict, then pt+1
i < pt+1

j .

We show that the condition γ ∈ [ 1k , 1] is sufficient for the result. Take group members i, j

such that αi ≥ αj and let pti ≤ ptj . These assumptions imply ĝ(pti;αi) ≥ ĝ(ptj ;αj). Now, the

1



difference between next period identities pt+1
i − pt+1

j can be simplified to

pt+1
i − pt+1

j

=
[
1− ĝ(pti;αi)

]γpti +
1− γ
k − 1

∑
l 6=i

ptl

− [1− ĝ(ptj ;αj)
]γptj +

1− γ
k − 1

∑
l 6=j

ptl


[
ĝ(ptj ;αj)− ĝ(pti;αi)

]1− γ
k − 1

∑
l 6=i,j

ptl


+

{[
1− ĝ(pti;αi)

] [
γpti +

1− γ
k − 1

ptj

]
−
[
1− ĝ(ptj ;αj)

] [
γptj +

1− γ
k − 1

pti

]}

The first part of this sum is non-positive given ĝ(ptj ;αj) − ĝ(pti;αi) ≤ 0. Furthermore,

the second part consists of the difference between two weighted averages of pti and ptj . If

γ ≥ 1/k, then γ ≥ 1−γ
k−1 so that the first of these averages is weakly smaller than the second.

In addition ĝ(ptj ;αj) − ĝ(pti;αi) ≤ 0 implies
[
1− ĝ(pti;αi)

]
≤
[
1− ĝ(ptj ;αj)

]
which ensures

that also the second part of the sum is negative. The sum of two non-positive numbers is

non-positive and thus overall pt+1
i − pt+1

j ≤ 0 as required. The result for strict inequality

follows from recognizing that ĝ(ptj ;αj) − ĝ(ptj ;αj) < 0 if either αi > αj or pti < ptj or both.

In that case, both parts of the sum are strictly negative and thus pt+1
i − pt+1

j < 0.

Further, the differences in identity are also maintained for periods more than one step

apart and we then arrive at the result stated in Proposition 12.

2 NETWORK STRUCTURE AND ABILITY

The steady state identity vector for group members is given by

p =
{

I− (I−Λ)
[
I− Ĝ(p)

]
Γ
}−1

[I− Ĝ(p)]Λ1pL.

Note first that in the second half of the expression the leader’s identity pL is multiplied by

[I− Ĝ(p)]Λ. Thus, for each group member i, this term depends on the influence the leader

has on that member, λi, as well as the weight the group member assigns to the community

as a whole relative to the host society, [1 − ĝ(pi, αi)]. Crucial for this weight is the produc-

tivity αi, which leads higher ability group members to assign a lower weight to the leader.

As this part depends only on a group member’s individual characteristics and is indepen-

dent of other group members, we define this half of the expression as the n × 1 vector of
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“idiosyncratic” identities. The network structure matters in the first part of the previous

equation, though. Rewriting yields

{
I− (I−Λ)

[
I− Ĝ(p)

]
Γ
}−1

=
∞∑
k=0

{
(I−Λ)

[
I− Ĝ(p)

]}k
Γk (1)

Each element of the sum consists of two components. First, Γk reflects the influence weights

among the group after k iterations, that is, element i, j of Γ to the k-th power gives the rela-

tive influence that the period t identity of group member j has on the period t+ k identity

of group member i. For k > 1 this matrix also captures indirect influences and allows group

members to influence each other that are not directly connected in the influence network.

For example, with k = 2, element i, j of Γk would be positive if j is at most 2 steps away

from i in the influence network. The second component (I − Λ)
[
I− Ĝ(p)

]
is a diagonal

matrix with elements on the diagonal (1 − λi)ĝ(pi;αi) < 1 that act as individual specific

discount factors: the higher k, the smaller the factor that is multiplied with the term Γk.

For each group member the expression above thus adds up the direct and indirect influ-

ences from across the group member network and weighs them in a way such that shorter

network connections receive higher weight than longer ones. The infinite sum presents the

relative influence weights in the limit when all possible influence paths through the group

member network are accounted for. Overall, equation (1) can thus be seen as a matrix of in-

fluence weights that captures the long-run pattern of influence, once all direct and indirect

influences amongst the group members have played out.

This matrix of long-run weights is then applied to the vector of idiosyncratic identity

terms [I− Ĝ(p)]Λ from above, that captures the identity level of each group member with-

out network influence. The result is a vector of steady state identities that each present a

weighted average of the idiosyncratic identities, with the weights given by the infinite sum

expression in equation (1).

To illustrate the relationship expressed in Proposition 4 between characteristics of the

group network and the resulting long run identities consider the following simple example

involving three group members. Two group members, A1 and A2, have a high productivity

αA, the third group member B a lower productivity αB , with αA > αB . We consider differ-

ent network structures among the three. In each case, we focus on symmetric distributions

of influence weights such that if one group member is connected to exactly n other group

members, each neighbor and the group member himself receive weight 1/(n + 1) in the
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updating process. Table 1 shows the results.

(1) (2) (3) (4)
A1

A2

B
A1

A2

B
A1

A2

B
A1

A2

B

Degree (A1, A2, B) 0, 0, 0 1, 1, 2 1, 2, 1 2, 2, 2
Clustering Coefficient 0 0 0 1
Density 0 2/3 2/3 1

Long-Run Identities , , , , , , , ,
(A1, A2, B) (0.20, 0.20, 0.92) (0.28, 0.28, 0.66) (0.21, 0.25, 0.70) (0.25, 0.25, 0.65)

Note: The example uses ĝ(p;α) = αe−0.9p. With α ≤ 1 this function ensures ĝ(p;α) ∈ (0, 1) and
in addition satisfies Assumption 1. Other parameters are as follows: pL = 1, initial p0i = 1 ∀ i,
αA = 0.8 and αB = 0.1.

Table 1: Long-Run Identities as a Function of Network Structure

(1) Isolated Group Members In the isolated case, long-run identities for the productive group

members A1 and A2 converge to a common level that is significantly lower than that of

group member B.

(2) / (3) Open Triangle / Line In the open triangle, we distinguish two cases. In the first case in

column (2), B is placed at the center, connecting to bothA1 andA2, while in the second case

in column (3), one of the high productivity group members is located at the center. We see

that in both cases, the existence of connections between the group members attenuates the

differences between the high and low productivity group members relative to the isolated

structure. In the case with B at the center, A1 and A2 show the same long run identity and

B’s identity is lower than in the second case with B at an end node. In that second case,

A1 and A2 will have different steady state identities, with the group member that is directly

connected to B converging to an identity above that of the other group member.

(4) Closed Triangle / Circle In the case of the closed triangle, A1 and A2 once more display

the same long run identity reflecting their symmetric positions in the group. Note that the

extra connections attenuate the differences between high and low α group members. These

are smaller than in both the isolated and the open triangle setting.

The examples illustrate a number of features of the long run identities as characterized

in Proposition 4. First, individual attributes such as the ability parameter αi and the indi-

vidual specific leader influence λi are important drivers of differences in identity between
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group members. Second, connections in the influence network tend to move the long-run

identities of the connected group members closer together.

In our example, the high productivity types A have a low identity when isolated but

their identities become more pronounced when we add connections to the low productivity

type, and vice versa for low productivity type B. In general, additional connections help

attenuate the difference between the most extreme identities. A similar pattern emerges for

clustering in groups. Comparing columns (2) and (4) in Table 1, we find that the difference

between types A and B is smaller in the highly clustered closed triangle.1

In light of these results, we can also discuss the impact that removing individual group

members has on the remainder of the group. As before, the impact of this intervention will

depend on both idiosyncratic factors (such as ability and susceptibility to leader influence)

and the extent of connectivity. First, a group member whose identity is more different

from that of the rest of the group will have a larger effect than one who is more similar to

others, holding all else equal. Second, if two group members have similar characteristics

but vary in connectivity, then similar to the “key player” analysis of Ballester et al. (2006)

the influence matrix also matters and the removal of a more connected connected player

will have a greater impact than that of a less connected one.

Generally, the long run outcome of an individual group member depends on the inter-

play of both idiosyncratic factors and network structure. Holding social influence constant

as in our example, higher ability types will integrate more and adopt a lower long-run iden-

tity than lower ability types. However, if the influence networks vary significantly between

types, then it is possible for a higher ability group member to integrate less and have a

higher identity in the long run than a lower ability group member.

3 CUTTING TIES

We have assumed throughout that group members’ connections to their own community

are weakened as they become more integrated in the host society. However, in our baseline

setting group members never fully leave their group and it seems plausible that agents can

also cut their connection to the community once their identity, that is their identification

with their own group, is sufficiently low. We consider this scenario, in which agents severe

1Note however that from this simple example we cannot disentangle the effect of clustering from the effect
of the additional connection between A1 and A2.
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ties to their community if they are sufficiently integrated, in what follows.

Note first that in the setting with two groups, there are no incentives for the group leader

to unilaterally exclude one group from the community.

Proposition 13. In the two-type setting with pmax sufficiently high, the leader never excludes one

group from the community.

The proof of this result can be found at the end of this section.

However, group members might still leave according to their own wishes. Suppose

there exists a boundary identity, p, such that all group members with an identity lower than

p sever ties to the group and only members with a higher identity remain in the community.

How does the leader respond to the possibility of group members cutting ties?

The problem is trivial if there is no group member whose identity lies below the bound

at the optimum: the leader is then effectively unconstrained and simply behaves as if the

bound were not present. However, if a group member’s identity at the unconstrained max-

imum lies below the bound, which induces this group member to leave the community,

the leader has two possibilities to respond. First, he can accommodate the group members

below the bound by increasing his own identity which in turn increases the identities of

the group members until no group member has the incentive to leave the community. Al-

ternatively, he allows for the group members to leave and focuses on the remaining group

members, selecting a possibly different level of pL that is optimal for the smaller group.

In order to calculate which option is more beneficial, we need to compare the payoff from

excluding a group to the payoff from adjusting the identity to retain the group.

To illustrate this comparison, we focus on the case of two types, A and B, with sym-

metric influence pattern where as before we assume that group members of type A have a

higher ability than group members of type B, such that in steady state pA < p < pB . De-

note the share of group members of typeA by κ. We index variables with a superscriptB to

indicate that only members of type B belong to the group, and by AB if both types remain

in the group. Then, ΠB , that is, the payoff if only type B remains in the group, is given by

ΠB = (1− κ)π(pBB, αBf(H
B
B))

If both types remain in the group, then pABA = p. We denote B’s identity in this case by pABB .

6



Then, the payoff is given by

ΠAB = κπ(p, αAf(H)) + (1− κ)π
(
pABB , αBf

(
H
AB
B

))
It is straightforward to see that the smaller κ, the more likely it is that the leader does not

increase his identity to retain members of type A. Depending on the exact specification it

can either be optimal for the leader to retain A types or to let them go. We construct an

example for each of these outcomes for a religious leader with the functional forms shown

in Table 2.

f(H) g(H) c(p)

kH − 1
6H

3 H
1+H

1
2(1 + p)

Table 2: Functional Forms

Then, we can provide an example for which ΠB < ΠAB and one for which the reverse

holds. It is better to keep both group members in the community, ΠB < ΠAB for the pa-

rameters specified in the first row of Table 3, whereas the second row shows the parameters

under which it is optimal to omit type A. Based on these parameters we can show what the

κ β λ γ αA αB k p

(1) ΠB < ΠAB 1/2 1/4 1/2 1/2 3/4 1/2 4 3/4
(2) ΠB > ΠAB 1/200 2/5 1/2 1/2 2 1/2 3 9/10

Table 3: Example

steady state identities, the identities of the leader and earnings of the group members are,

respectively. This is summarized in Table 4, where again the first row gives the case when

it is better to keep group member A within the community, whereas in the second row it is

better if A has severed his ties.

pBL pBB αBf(H
B
B) ΠB pABL pABB αAf(H

AB
A ) αBf(H

AB
B ) ΠAB

(1) 3.93 .75 3.45 1.38 4.29 .82 5.46 3.42 3.52
(2) 3.70 .95 1.92 1.52 4.70 1.39 9.70 1.55 1.50

Table 4: Identities and Earnings

Note that in the first case where it is optimal to retain group A, the leader would prefer

to set a lower identity than 3.93 if he only faces B types. However, he cannot do so as

then the group members of type A would leave the group. What can be noted here is
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that whenever only type B’s remain in the group, the leader sets a lower identity, which

results in better integration and higher earnings of the group members. Therefore, A types

leaving the group leads to better integration outcomes through two channels: the A types

will integrate completely and additionally, the B types will integrate better.

It is natural to ask to what extent the effect of a policy measure in the case where ties

vary only in their intensity carry over to the setting where ties can be cut. To see this more

clearly, suppose B’s productivity αB decreases, from 1/2 to 1/3. We focus here on example

(1) as such a decrease in αB in example (2) induces the leader to choose maximal cultural

distinction (independently of whether the boundaries are present or not). The identities and

earnings if ties only change continuously are given in the first row of Table 5. The second

row shows the corresponding value if αB decreases from 1/2 to 1/3.

pL pA pB αAf(HA) αBf(HB) Π

(1) with αB = 1/2 4 .70 .76 5.47 3.44 3.52
(1) with αB = 1/3 1.45 .24 .28 5.56 2.25 2.99

Table 5: Identities and Earnings without Cutting Ties

This shows that if αB decreases, the leader lowers his identity significantly. Both types

of identities fall and while the earnings of type A increase, those of type B decrease.

If ties to the community are cut for sufficiently low identity, then the payoffs for αB =

1/3 are as given in Table 6.

pBL pBB αBf(H
B
B) ΠB pABL pABB αAf(H

AB
A ) αBf(H

AB
B ) ΠAB

(1) 3.93 .75 1.96 .83 4.15 1.10 5.46 1.61 2.88

Table 6: Identities and Earnings: αB = 1/3

If only type B remains in the group, the leader has to set the same identity as before the

change in αB in order to satisfy the boundary condition. If both group members remain in

the group, then the leader sets a lower identity similar to the case where ties cannot be cut.

Given that group members B now have a higher identity for a given leader choice pL, the

leader can reduce the pL he chooses in order to keep A within the group. Therefore, the

policy implications in this case are exactly the same as if ties cannot be cut.

Generally, we consider the case in which all group members remain in the group to

be the most interesting and realistic one. As can be seen from the example presented, the

share of productive types needs to be very small in order for the productive group members
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to be omitted from the group.2 If it is only beneficial to let group members leave, if they

constitute a sufficiently small part, then policy makers are still faced with large groups of

immigrants who will not integrate fully and essentially the problem remains the same as

in the case where ties are not cut. In fact the problem is exacerbated, as group leaders will

now choose a higher level of cultural distinction compared to the case where ties cannot

be cut and the impact of the policies is more limited. Whereas the leader’s identity fell

dramatically when cutting links was not possible as a response to the decrease in αB , the

reduction in the leader’s identity if ties can be eliminated is much more moderate.

Proof of Proposition 13: Leader Exclusion

Suppose there are two types of group members, A andB and that the share of typeAmem-

bers is given by κ. Consider without loss of generality the case where the leader excludes

type A members and only group members of type B belong to the group. The payoff to the

group leader is then given by

ΠB = (1− κ)π(pBB, αBf(H
B
B)),

where pBB is the type B steady state identity determined by the optimal leader identity in

case the group only contains B types. We denote the corresponding leader identity by pBL .

The steady state is therefore characterized by

pBB =
(
1− ĝ(pBB;αB)

) (
λBp

B
L + (1− λB)pBB

)
Now consider the payoff if agents of type A are part of the community and the leader

chooses his identity pABL such that pABB = pBB . With pmax sufficiently high, this is always

possible by adjusting pABL appropriately. Then the payoff is given by

ΠAB = κπ(pABA , αAf(H
AB
A )) + (1− κ)π(pABB , αBf(H

AB
B ))

= κπ(pABA , αAf(H
AB
A )) + (1− κ)π(pBB, αBf(H

B
B))

> (1− κ)π(pBB, αBf(H
B
B))

Therefore, the payoff when agents of type A belong to the group is higher than the payoff

when they do not belong to the group. Thus, a leader does not have an incentive to omit

2 This seems to be a general feature of the examples we considered.
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one type from the group.

4 SKILL INVESTMENT WITH FORWARD-LOOKING AGENTS

We discuss optimal skill investment of group members with foresight in two scenarios

based on different degrees of foresight: In Scenario 1, group members evaluate their skills

investment on a forward-looking basis, considering in particular that skills may be durable.

However they remain myopic about future identity changes. In Scenario 2, group members

incorporate a prediction of their own future identity as well as the path of other group

member identities in the skills investment decision.

Scenario 1: Group Members Ignore Identity Changes

Consider first a group member with starting identity p0, ability α and discount factor ρ. The

group member takes p0 as given and fixed forever.

We denote the decay factor of skills by δ ∈ [0, 1) and generalize the cost function to

C(h, p) to bring out the impact of the linearity assumption made in the main part of the

paper. The stock of skills H then acts as a state variable.

The problem of the group member is to maximize:

V (H0) =

∞∑
t=1

ρt
[
αf(Ht)− C

(
Ht − δHt−1, p0

)]
.

By the principle of optimality, we can rewrite the problem recursively using the Bellman

equation

V (H) = max
H′

{
αf(H ′)− C

(
H ′ − δH

)
+ ρV (H ′)

}
.

As the period payoff function and the updating function are continuous and bounded we

can analyze the problem using standard dynamic programming techniques that yield the

Euler equation connecting current investmentH , tomorrow’sH ′ and for two periods ahead

H ′′:

αf ′(H ′)− C ′
(
H ′ − δH

)
= −ρδC ′

(
H ′′ − δH ′

)
< 0.

The right hand side is negative as C ′ > 0. Thus, at the optimum a group member invests
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more today, anticipating that a higher H ′ tomorrow will yield additional benefits in the

future by reducing the need to invest then. At the steady state H = H ′ = H ′′ = H and thus:

αf ′(H)− C ′
(
(1− δ)H

)
= −ρδC ′

(
(1− δ)H

)
.

The term on the right is zero if ρ = 0 or δ = 0. Thus, if skills decay fully and δ = 0 then

myopic outcome is equal to the forward looking one. However, if δ > 0, then skills are

durable and thus valuable in the future. As a consequence, a group member with ρ > 0

will invest more today than with ρ = 0. Steady state investment is higher under forward

looking behavior than in the myopic case.

Scenario 2: Group Members Predict Identity Changes

In this section we analyze a variant of our model in which group members are forward-

looking and anticipating both their future identity as well as the path of identities of other

members of the group. We characterize a forward-looking equilibrium in which each group

member solves a dynamic problem maximizing payoffs while taking as given the path of

other group members.

Maximization Problem Denote by
{
Ht
i

}∞
t=0

and
{
pti
}∞
t=0

the path of player i’s skill level

and identity, respectively, and similarly
{
pt−i
}∞
t=0

for all other players. Group member i

maximizes:

max
{pti}

∞
t=0

∞∑
t=0

ρt
{
αf(Ht

i )−
(
c0 + c1p

t
i

)
Ht
i

}
subject to the updating equation:

pt+1
i =

[
1− g(Ht

i ;αi)
]λpL + (1− λ)

γiipti +
∑
j 6=i

γijp
t
j


Player i takes the full path of identities for other players

{
pt−i
}∞
t=0

as given and chooses{
pti
}∞
t=0

accordingly. In equilibrium, all players will individually select a path that repre-

sents a best response to other group member’s paths. This equilibrium reflects an open

loop Nash equilibrium and can be interpreted as the Nash equilibrium of the game where

players can commit to their future path at time zero.3

3For further discussion of open loop equilibria and related concepts see e.g. Section 13.4.1 in Fudenberg and
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Effect of Additional Periods on Skills Investment To bring out the effect that extending

the investment horizon has on group member investment decisions when they take account

of changes in identity both of themselves and other group members, consider first a finite

time problem with final period T . The myopic decision problem then corresponds to the

final period in which group member i takes pTi and pT−i as given and maximizes:

αif(HT
i )− (c0 + c1p

T
i )HT

i

As shown in the main part of the paper, the solution is characterized by the first order

condition

αif
′(HT

i )− c0 + c1p
T
i = 0

The optimal level of investment is independent of other group members’ identities or in-

vestment levels.

Now, add one further time period by considering the problem from period T−1. Denote

by V T
i (pTi ) the maximum utility achieved by player i in period T . Note that in this notation

V T (·) explicitly keeps track of time as the problem is not stationary: the value of starting

with identity level pi in final period T is different from starting in period T−1. Furthermore

the identities of other players are permitted to change and this means that until a stationary

outcome in which identities of other players do not change is reached, we have to keep track

of the time period and the corresponding identities for other players in our calculations.

Note further that the value function is decreasing in pTi : a lower identity reduces the

marginal cost of skills in investment and thereby allows i to achieve a higher payoff from

investment. The effect can be expressed using the envelope theorem:

V T
i (pTi ) = max

HT
i

{
αif(HT

i )− (c0 + c1p
T
i )HT

i

}
(V T
i )′(pTi ) =− c1HT

i < 0

Consider now the problem from period T −1. The value function for the group member

Tirole (1991).
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can then be written as:

V T−1
i (pT−1i ) = max

HT−1
i

{
αif(HT−1

i )− (c0 + c1p
T−1
i )HT−1

i + ρV T
i (pTi )

}

The first order condition for the choice ofHT−1
i now includes the effect it has on the starting

identity for final period T via the transition equation.

αif
′(HT−1

i )− (c0 + c1p
T−1
i )HT−1

i +
∂pTi

∂HT−1
i

ρ(V T
i )′(pTi ) = 0 (2)

where

∂pTi
∂HT−1

i

= −g′(HT−1
i )

λpL + (1− λ)
∑
j

γijp
T−1
j

 < 0

Compared to the myopic approach and the final period, this condition reflects an additional

incentive to invest in HT−1
i represented in the second term on the right hand side of equa-

tion (2): a higher HT−1
i implies player i will enter the final period with a lower identity

and this lower identity means a greater payoff in that final period. Thus, compared to the

myopic approach where this effect is ignored, this leads to greater levels of skills and lower

identity. The strength of the additional effect depends on the identities of all group mem-

bers that player i is connected to. The higher the identities of those other group members,

the more they push player i’s identity up and therefore the greater the payoff from investing

in HT−1
i to shift influence away from the group and towards the host society.

Consider now the derivative of V T−1
i (pT−1i ). As before, by the envelope theorem we can

focus on the direct effect of changes in pT−1i yielding the following expression:

(V T−1
i )′(pT−1i ) =− c1HT−1

i +
∂pTi
∂pT−1i

ρ(V T
i )′(pTi ) (3)

where

∂pTi
∂pT−1i

=
[
1− g(HT−1

i )
]

(1− λ)γii > 0

The additional term captures the effect that a change in pT−1 has on next period identity

through the identity updating equation.

Turning now to the problem as seen from period T − 2, the first order condition takes
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account of this additional term as follows:

αif
′(HT−2

i )− (c0 + c1p
T−2
i )HT−2

i +
∂pT−1i

∂HT−2
i

ρ(V T−1
i )′(pT−1i )

=αif
′(HT−2

i )− (c0 + c1p
T−2
i )HT−2

i +
∂pT−1i

∂HT−2
i

ρ

{
−c1HT−1

i +
∂pTi
∂pT−1i

ρ(V T
i )′(pTi )

}
=0

As both terms in curly braces are negative, there is thus an additional incentive for player

i to choose a higher level of HT−2
i relative to time period T − 1: a higher skill level implies

a lower next period identity that – in addition to reducing marginal cost of investment in

period T − 1 – will also lead to a lower identity in period T , adding further benefits. Note

that the strength of this effect depends on the parameter γii, i.e., the extent to which past

identity influences next period identity for player i.

As we roll back the problem further in time, these benefits will accumulate further,

so that in period 1 an increase in H1
i will reduce not only p2i but also all future pti. Note

that overall the problem remains well defined due to concavity of f(·) and the linearity of

marginal costs. There thus exists a unique solution of the sequence problem for any given

path of other group members’ identities over time.

Forward-Looking Skills Investment at the Steady State As noted above, for a given path

of identities of other group members the optimization problem of group member i is not

necessarily stationary across time. To be able to say more about impact of forward-looking

behavior on long-run skills investment we consider a group which has reached a steady

state.

In steady state pti = pi, Ht
i = Hi as well as V t(pti) = V (pi) for all players and thus we

have a stationary investment problem from the perspective of group member i. This allows

dropping the superscript t from the value functions and the derivative of the value function

in equation (3) can then be rearranged to yield

V ′(pi) =
−c1Hi

1− ρ(1− λ)
[
1− g(Hi)

]
γii

=
(
−c1Hi

) ∞∑
t=0

[
ρ(1− λ)

[
1− g(Hi)

]
γii
]t

The expression in terms of an infinite sum highlights the way in which an increase in iden-

tity pi creates benefits in terms of marginal cost reductions proportional to c1Hi both directly

14



and indirectly via its effect on next period pi and subsequent periods for the infinite future.

The first order condition for the optimal skills level in the steady state can be rearranged

to

αif
′(Hi)− (c0 + c1pi)

= −ρ c1Hi

1− ρ(1− λ)
[
1− g(Hi)

]
γii
g′(Hi)

λpL + (1− λ)

γiipi +
∑
j 6=i

γijpj


This condition shows that relative to the myopic optimization problem, the group members

have an incentive to invest more in skills, resulting in lower steady state identities. This

incentive derives from the negative relationship between skills and identity and the extent

to which lower identity reduces the marginal costs of further investment, both directly, and

indirectly through lowering future identities via the self-influence parameter γii.

Implications for Convergence of Identities

The derivations in the previous sections bring out the effect of extending the planning hori-

zon of group members in their decision how much to invest in skills. As we show, making

players forward-looking tends to lead to greater investment levels than the myopic case,

both in the setting with durable skills (Scenario 1) and in the setting with players predicting

future paths for their own and other players’ identities (Scenario 2). Through the function

g(·) these higher investment levels will translate mechanically into an overall lower path of

group member identities compared to the myopic case.

In terms of implications for the dynamics of our model, we can capture these differ-

ences by suitably adjusting the function ĝ(p), which maps a group member’s identity into

the weight assigned to the host society and implicitly reflects the optimal choice of invest-

ment. With forward looking agents we would expect to see this function to increase for

every p. However, as long as the resulting new function ĝ(p) satisfies our Assumption 1,

the convergence of the system overall is assured as before and Proposition 3 will go through.

Furthermore, the qualitative properties of the long run outcome such as incomplete assim-

ilation of group members remain unaffected.
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5 Proofs

Proof of Proposition 13: Comparative Statics γ

Note that as FAB ≡ YA
∂pA
∂pL

+ YB
∂pB
∂pL

= 0, it follows that YB = −YA ∂pA∂pL

(
∂pB
∂pL

)−1
. Based on

this we can then turn to the two parts of the proof.

Part 1 We know that

∂YA
∂pA︸︷︷︸
≤0

∂pA
∂γ︸︷︷︸
<0

∂pA
∂pL︸︷︷︸
>0

+
∂YB
∂pB︸︷︷︸
≤0

∂pB
∂γ︸︷︷︸
>0

∂pB
∂pL︸︷︷︸
>0

The terms ∂pi
∂pL

and ∂pi
∂γ can be determined through the Implicit Function Theorem, where

similar to before we define

|J | = ∂FA
∂pA

∂FB
∂pB

− ∂FA
∂pB

∂FB
∂pA

, |Ji(pL)| = ∂Fi
∂pL

∂F−i
∂p−i

− ∂Fi
∂p−i

∂F−i
∂pL

, |Ji(γ)| = ∂Fi
∂γ

∂F−i
∂p−i

− ∂Fi
∂p−i

∂F−i
∂γ

Then, ∂pA∂pL
= − |JA(pL)|

|J | , ∂pB∂pL
= − |JB(pL)|

|J | and ∂pA
∂γ = − |JA(γ)|

|J | , ∂pB∂γ = − |JB(γ)|
|J | .

We are interested in comparing the magnitudes of the different effects and in order to

compare them we define

Xi ≡ 1 +
∂ĝ(pi;αi)

∂pi

(
λpL + (1− λ)(γpi + (1− γ)pj)

)
− (1− λ)γ (1− ĝ(pi;αi)) > 0

We first show that ∂pA∂pL
< ∂pB

∂pL
which is equivalent to showing that −|JA(pL)| < −|JB(pL)|.

−|JA(pL)| = XBλ (1− ĝ(pA;αA)) + λ(1− λ)(1− γ) (1− ĝ(pA;αA)) (1− ĝ(pB;αB)) > 0

−|JB(pL)| = XAλ (1− ĝ(pB;αB)) + λ(1− λ)(1− γ) (1− ĝ(pA;αA)) (1− ĝ(pB;αB)) > 0

Thus −|JA(pL)| < −|JB(pL)| if

XB (1− ĝ(pA;αA)) < XA (1− ĝ(pB;αB))

⇔ (1− ĝ(pB;αB))

(
1 +

∂ĝ(pA;αA)

∂pA
(λpL + (1− λ)(γpA + (1− γ)pB))

)
> (1− ĝ(pA;αA))

(
1 +

∂ĝ(pB;αB)

∂pB
(λpL + (1− λ)(γpB + (1− γ)pA))

)
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We know that (1− ĝ(pB;αB)) > (1− ĝ(pA;αA)) and so it remains to show that

∂ĝ(pA;αA)

∂pA
(λpL + (1− λ)(γpA + (1− γ)pB)) >

∂ĝ(pB;αB)

∂pB
(λpL + (1− λ)(γpB + (1− γ)pA))

which is guaranteed for γ ≥ 1
2 and a concave ĝ(pi;αi). Thus, we have shown that ∂pA∂pL

< ∂pB
∂pL

.

Next, we show that ∂pB∂γ > −∂pA
∂γ . As before, it suffices to compare −|JA(γ)| and |JB(γ)|.

−|JA(γ)| = (1− ĝ(pA;αA))(1− λ)(pB − pA) (XB − (1− λ)(1− γ)(1− ĝ(pB;αB)))

|JB(γ)| = (1− ĝ(pB;αB))(1− λ)(pB − pA) (XA − (1− λ)(1− γ)(1− ĝ(pA;αA))) .

This reduces to exactly the same condition as before and so we have established that ∂pB∂γ >

−∂pA
∂γ . Thus whenever ∂YA

∂pA
is either larger or not much smaller than ∂YB

∂pB
, Part 1 is negative.

A sufficient condition is ∂3π(p,αf̂(p;α))
∂p3

≤ 0.

Part 2 We write

YA
∂2pA
∂pL∂γ

+ YB
∂2pB
∂pL∂γ

= YA

{
∂2pA
∂pL∂γ

− ∂pA
∂pL

(
∂pB
∂pL

)−1 ∂2pB
∂pL∂γ

}
. (4)

We know from the first order condition that YA and YB have opposite signs. As Yi is de-

creasing in pi and pA < pB , it has to be the case that YA is positive and YB is negative. Thus,

we focus on

sign

(
∂2pA
∂pL∂γ

− ∂pA
∂pL

(
∂pB
∂pL

)−1 ∂2pB
∂pL∂γ

)
= sign

(
∂pB
∂pL

∂2pA
∂pL∂γ

− ∂pA
∂pL

∂2pB
∂pL∂γ

)

as ∂pB
∂pL

> 0.

We know that ∂pA∂pL
= −|JA(pL)|

|J | , which leads to

∂2pA
∂pL∂γ

=
|J |∂|JA(pL)|

∂γ − |JA(pL)|∂|J |∂γ

|J |2
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We can then write

∂pB
∂pL

∂2pA
∂pL∂γ

− ∂pA
∂pL

∂2pB
∂pL∂γ

=
|JB(pL)|
|J |

|J |∂|JA(pL)|
∂γ − |JA(pL)|∂|J |∂γ

|J |2
− |JA(pL)|

|J |
|J |∂|JB(pL)|

∂γ − |JB(pL)|∂|J |∂γ

|J |2
< 0

⇔|JB(pL)|∂|JA(pL)|
∂γ

− |JA(pL)|∂|JB(pL)|
∂γ

< 0 (5)

We have shown that |JB(pL)| > |JA(pL)| > 0. We thus focus on:

∂|JA(pL)|
∂γ

=
∂ĝ(pB;αB)

∂pB
λ(1− λ) (1− ĝ(pA;αA)) (pB − pA)

− 2λ(1− λ) (1− ĝ(pA;αA)) (1− ĝ(pB;αB)) < 0

∂|JB(pL)|
∂γ

=
∂ĝ(pA;αA)

∂pA
λ(1− λ) (1− ĝ(pB;αB)) (pA − pB)

− 2λ(1− λ) (1− ĝ(pA;αA)) (1− ĝ(pB;αB)) .

Equation (5) is true whenever ∂|JB(pL)|
∂γ ≥ 0. If ∂|JB(pL)|

∂γ < 0, then it remains true if ∂|JA(pL)|
∂γ <

∂|JB(pL)|
∂γ which is equivalent to

∂ĝ(pB;αB)

∂pB
λ(1− λ) (1− ĝ(pA;αA)) (pB − pA) <

∂ĝ(pA;αA)

∂pA
λ(1− λ) (1− ĝ(pB;αB)) (pA − pB),

which we already established above.
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